Reducing jitter utilising adaptive pre-emphasis FIR filter for high speed serial links

Marius Goosen
Supervisor: Prof. Saurabh Sinha

Microelectronics & Electronics Group
Monday, 29 November 2010
Agenda

• Background
• High speed serial links on copper channels
• Frequency dependant distortion
• Deterministic jitter
• Adaptive pre-emphasis
• Pilot signaling and peak detection
• Simulation results
• Experimental results
• Conclusion
Background

- M-data lines combined into a high speed serial data line
- Less skew between lines
- Higher bandwidth capability
- Lower pin count and cost of implementation
High speed serial links

<table>
<thead>
<tr>
<th>Reference</th>
<th>Data rate</th>
<th>Technology</th>
<th>Pre-emphasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>1 Gb/s</td>
<td>CMOS</td>
<td>None</td>
</tr>
<tr>
<td>[2]</td>
<td>5 Gb/s</td>
<td>CMOS</td>
<td>3-tap</td>
</tr>
<tr>
<td>[3]</td>
<td>10 Gb/s</td>
<td>CMOS</td>
<td>5-tap</td>
</tr>
<tr>
<td>[4]</td>
<td>10 Gb/s</td>
<td>BiCMOS</td>
<td>None</td>
</tr>
</tbody>
</table>

Frequency dependant distortion: Package parasitics

- Introduces frequency dependant devices

Inductance a problem:
- Thicker bond wires
- Use multiple bond wires
- Use tape bonding

\[L_{\text{Bondwire}} \approx 1 \text{ nH/mm} \]

\[C_{\text{pad_sub}} \approx 45-50 \text{ fF} \]
Frequency dependant distortion: Copper backplane channel

- Copper channel loss: \(\alpha_{tot} = \alpha_c + \alpha_d \)
- Conductor loss due to skin effect: \(\alpha_c = 8.686 \frac{R_{skin}}{Z_o W} \)
- Where \(R_{skin} \) represents a frequency dependent resistor attenuating the signal:
 \[
 R_{skin} = \frac{\sqrt{\pi f \mu \sigma}}{\sigma}
 \]
- Loss due to dielectric: \(\alpha_d = \frac{\pi f}{c} \left(\frac{\varepsilon_{eff} - 1}{\varepsilon_r - 1} \right) \frac{\varepsilon_r}{\varepsilon_{eff}} \tan \delta \)
Frequency dependant distortion: Copper backplane channel
Frequency dependant distortion: Channel response

- Loss of 50 dB @ 10 GHz
- Severe frequency dependent distortion
Deterministic jitter

- Deterministic jitter:
 - Duty cycle distortion
 - Data dependent jitter
- DDJ caused by this frequency dependent distortion
- DDJ causes uncertainty in pulse edges

\[f_{DJ}(t) = \frac{1}{2} \left[\delta \left(t - \frac{D}{2} \right) + \delta \left(t + \frac{D}{2} \right) \right] \]
Pre-emphasis and implementation
Adaptive pre-emphasis

- Conventional pre-emphasis
 - Externally adjustably filter taps
 - Fixed filter taps

- Adaptive pre-emphasis
 - Automatically finds optimal filter taps
 - Does not require a characterised channel

Requires characterised channel
Pilot signaling and peak detection

1. Reset all filter taps
2. Initialise $h(n)$ to maximum
3. Update $h(n)$ by decreasing with LSB
4. Transmit pilot signal $P(n)$
5. Peak detection at receiver
6. Error calculation
7. If Error < 0 then Yes, else No

P(0)

P(1)

P(2)

P(3)

Pilot signaling and peak detection

- Representing the channel and FIR filter as impulse response

\[I_{CHN}(n) = \sum_{k=0}^{N} c_k \delta(n - k) \]

\[I_{FIR}(n) = \sum_{k=0}^{N} h_k \delta(n - k) \]

- For the first pilot signal:

\[y(n) = [h_0c_0, h_0c_1, h_0c_2, h_0c_3] \]

- For the second pilot signal:

\[y(n) = [h_0c_0, h_0(c_0 + c_1) + h_1c_0, h_0(c_1 + c_2) + h_1(c_0 + c_1), h_0(c_2 + c_3) + h_1(c_1 + c_2)] \]
Design and implementation overview

- 50 Ω termination
- CML DFF
- CML XOR
- Filter tap No. 1
- 6-bit current mode DAC
- 7-bit counter
- Comparator
- Pulse generators
- Differential amplifier
- Control logic
- Pilot signal generator
- FIR pre-emphasis driver
- CML multiplexer
- Data in
- CLOCK in
- TX
- RX

7 μA / 0.35 mV

Department Elektriese, Elektroniese & Rekenaar-Ingenieurswese
Department of Electrical, Electronic & Computer Engineering
Kgoro ya Merero ya Mohlagase, Elektroniki & Bointšinere bja Khomphutha
Mathematical simulation results •

Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese
Department of Electrical, Electronic & Computer Engineering
Kgomo ya Merero ya Mohlagase, Elektroniki & Bointšinere bja
Khomphutha
Mathematical simulation results

Ideal data transmitted

Data received without pre-emphasis

Data received with pre-emphasis

Departement Elektriese, Elektroniese & Rekenaar-Ingenieurswese
Department of Electrical, Electronic & Computer Engineering
Kgoro ya Merero ya Mohlagase, Elektroniki & Bointšinere bja
Khomphutha
Mathematical simulation results
Circuit simulation results •
Circuit simulation results

(a) Voltage vs. Time

(b) Voltage vs. Time

(c) Voltage vs. Time

(d) Voltage vs. Time

(e) Voltage vs. Time

Department of Electrical, Electronic & Computer Engineering
Kgoro ya Merero ya Mohlagase, Elektroniki & Bointšinere bja Khomphutha
Experimental results

- Approximately 1600 transistors
- Area = 0.725 mm²
- 1000 µm x 670 µm
- 340 µm x 160 µm
Experimental results • •

TX
OUT+
OUT-
EOC IN
CLK
DATA
ADJ OUT
Shift IN
Shift OUT
ADJ OUT

RX
IN−
IN+

4 Biasing pads
11 mm

2 Biasing pads
11 mm

1.5 mm
Experimental results

- Transmitter
 - Working with a single filter tap
 - 14% smaller swing
 - Unable to move to other states
- Receiver
 - Pulses generated from TX signals
 - Correct pulse width – too low amplitude to switch CMOS logic
Experimental results

- Pulse generation circuit depends on an RC time constant
 - Used in a feedback loop
 - R determines:
 - Charge rate
 - Discharge rate
 - R → Biased PMOS transistor
 - Achieve constant charge and discharge rate
 - Too slow, hence CMOS output buffer not properly switched.
 - Corner analysis
Experimental results

- Static power dissipation
 - Transmitter
 - Power dissipation = 36 mW
 - Calculated ≈ 32.5 mW (with one active filter tap)
 - Receiver
 - Power dissipation = 19.8 mW
 - Calculated ≈ 18 mW

<table>
<thead>
<tr>
<th>Speed</th>
<th>Swing</th>
<th>Filter taps</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulated</td>
<td>5 Gb/s</td>
<td>300 mV</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>10 Gb/s</td>
<td>200mV</td>
<td>6</td>
</tr>
</tbody>
</table>
Conclusion

- Possible “easy” solution for bandwidth problems
 - One button high speed serial link
- Speed tests still need to be performed
- Pulse generation circuit should be redesigned
 - Produce higher integrity signal

- 2 international IEEE conference articles

- 1 local conference article

- International Journal paper submission
Acknowledgement

The authors would like to thank ARMSCOR, the Armaments Corporation of South Africa Ltd, (Act 51 of 2003) for sponsoring this study.